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Abstract

Chemoautotrophic symbionts of deep sea hydrothermal vent tubeworms are known to

provide their hosts with all their primary nutrition. While studies have examined how

chemoautotrophic symbionts provide the association with nitrogen, fewer have exam-

ined if symbiont nitrogen metabolism varies as a function of environmental condi-

tions. Ridgeia piscesae tubeworms flourish at Northeastern Pacific vents, occupy a

range of microhabitats, and exhibit a high degree of morphological plasticity [e.g.

long-skinny (LS) and short-fat (SF) phenotypes] that may relate to environmental con-

ditions. This plasticity affords an opportunity to examine whether symbiont nitrogen

metabolism varies among host phenotypes. LS and SF R. piscesae were recovered from

the Axial and Main Endeavour Field hydrothermal vents. Nitrate and ammonium were

quantified in Ridgeia blood, and the expression of key nitrogen metabolism genes, as

well as stable nitrogen isotope ratios, was quantified in host branchial plume and sym-

biont-containing tissues. Nitrate and ammonium were abundant in the blood of both

phenotypes though environmental ammonium concentrations were, paradoxically, low-

est among individuals with the highest blood ammonium. Assimilatory nitrate reduc-

tase transcripts were always below detection, though in both LS and SF R. piscesae
symbionts, we observed elevated expression of dissimilatory nitrate reductase genes,

as well as symbiont and host ammonium assimilation genes. Site-specific differences

in expression, along with tissue stable isotope analyses, suggest that LS and SF Ridgeia
symbionts are engaged in both dissimilatory nitrate reduction and ammonia assimila-

tion to varying degrees. As such, it appears that environmental conditions –not host

phenotype—primarily dictates symbiont nitrogen metabolism.
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Introduction

Deep sea hydrothermal vents are often dominated by

large animals that are obligately symbiotic with chemo-

autotrophic bacteria (Stewart & Cavanaugh 2006). Many

of the hosts in these associations are entirely dependent

upon their symbionts (microbiome) for nutrition.

Indeed, the reduction of the host gut prevents the

uptake and ingestion of particulate organic matter, and

hosts are incapable of completing their life cycles with-

out their symbionts. The uptake of dissolved organic

matter by such symbioses may still be possible (Fiala-

M�edioni et al. 1986) but is unlikely to substantially

contribute to the nutritive needs of the association.

The vestimentiferan tubeworms (phylum Annelida,

family Siboglinidae) are among the best-studied chemo-

autotrophic symbioses and are abundant at vents along
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the East Pacific Rise (EPR; Jones 1985; Black et al. 1997;

Stewart & Cavanaugh 2006), the Juan de Fuca Ridge

(JDF; Southward et al. 1995; Black et al. 1997; Stewart &

Cavanaugh 2006) and other vent and cold seep sites.

Adult tubeworms are mouthless and gutless, and host

intracellular chemoautotrophic symbionts (c-proteobac-
teria) live densely in a specialized organ called the troph-

osome (Cavanaugh et al. 1981). It is thought that

tubeworms rely on their symbionts for all their primary

nutrients, including carbon, nitrogen, and phosphorous

(Stewart & Cavanaugh 2006; Gibson et al. 2010). Several

tubeworm genera are found at hydrothermal vents,

including Riftia, Ridgeia, Oasisia and Tevnia (as reviewed

in, Gibson et al. 2010). All vent tubeworm symbionts are

closely related, with nearly identical 16S rRNA gene

sequences (Feldman et al. 1997; Di Meo et al. 2000;

Harmer et al. 2008) and strikingly similar metagenomes

(Gardebrecht et al. 2011).

Living at the interface between cold seawater and

warm vent fluids, tubeworms use their plume-like gill

to take up reduced chemicals (e.g. sulphide) from the

vent fluid and oxygen from the ambient seawater,

providing substrates for energy generation by the sul-

phide-oxidizing symbionts. In exchange, symbionts use

the energy derived from sulphide oxidation to fix CO2

into organic carbon to feed themselves and their hosts

(Felbeck et al. 1981; Felbeck & Jarchow 1998).

While carbon and energy metabolism in tubeworm

symbioses are well studied (Felbeck et al. 1981; Fisher &

Childress 1986; Childress et al. 1991; Goffredi et al. 1997;

Felbeck & Jarchow 1998; Girguis & Childress 2006;

Nyholm et al. 2008; Scott et al. 2012), modes of nitrogen

metabolism have been less studied (Hentschel & Fel-

beck 1993; Pospesel et al. 1998; De Cian et al. 2000; Gir-

guis et al. 2000). The growth and maintenance of any

organism requires an exogenous nitrogen source, and at

hydrothermal vent, the dissolved organic nitrogen (i.e.

amino acids) is scarce, usually <200 pM (Johnson et al.

1988; De Cian et al. 2000). As mentioned, the lack of a

mouth and a gut prevents ingestion of particular

organic matter. Inorganic nitrogen, however, is abun-

dant in the surrounding seawater, including dissolved

dinitrogen (approximately 590 lM) and nitrate (approxi-

mately 40 lM; Charlou et al. 2000; Bourbonnais et al.

2012). Also, ammonium is present at some vents, and

its concentrations range widely from <1 lM at the East

Pacific Rise (Minic & Herv�e 2003) up to 640–950 lM
along the Endeavour segment of the Juan de Fuca

Ridge (Lilley et al. 1993) and approximately 15 mM at

the sedimented vents in the Guaymas Basin (Von

Damm et al. 1985; Karl et al. 1988). The elevated concen-

trations of ammonium probably result from the decom-

position of organic substrates in sediments buried in

the subseafloor or covering the ridge axis.

Around hydrocarbon and brine seeps, environmental

ammonium is known to be an important nitrogen source

for chemoautotrophic symbioses (Lee & Childress 1994;

Lee et al. 1999). However, the extent to which vent chemo-

autotrophic symbioses use ammonium is unclear. Most

previous studies suggest that Riftia symbionts are engaged

in dissimilatory nitrate reduction (Hentschel & Felbeck

1993; Gardebrecht et al. 2011; Markert et al. 2011), assimila-

tory nitrate reduction (Lee & Childress 1994) or dissimila-

tory nitrate reduction to ammonium (DNRA) as a source

of reduced nitrogen for biosynthesis (Girguis et al. 2000).

Modest ammonium assimilation by Riftia worm tissues

has also been observed (Lee & Childress 1994; Minic et al.

2001), and Riftia living in organic-rich sedimented hydro-

thermal vents use ammonium rather than nitrate (Robi-

dart et al. 2011). Sedimented vent systems aside (which

are anomalous due to the high concentrations of organic

matter), it is unclear whether chemoautotrophic symbioses

living at the more common basaltic vents are engaged in

nitrate reduction even in the presence of exogenous

ammonium. Moreover, it is unclear if there are variations

in nitrogen uptake and utilization by the same species

living in different microhabitats, for example, warmer or

cooler diffuse vents where nitrate and ammonium concen-

trations can be drastically different.

Ridgeia piscesae vent tubeworms (hereafter referred to

simply as Ridgeia; Fig. 1A, B) are an ideal model to

investigate nitrogen utilization because they are found

in a broad range of habitats at vents in the Northeast

Pacific, thriving in environments with a wide range of

exogenous ammonium concentrations (from approxi-

mately 10 to >950 lM; Black et al. 1998). Ridgeia also

exhibit two distinct phenotypes, hereafter referred to as

long-skinny (LS) and short-fat (SF) Ridgeia. LS and SF

Ridgeia are strikingly different in size, tube shape and

colour, and plume shape. The LS morphotype tend to

be narrow and long, c. 20–30 cm in length, with an

extensive root-like posterior (Southward et al. 1995;

Andersen et al. 2006; Carney et al. 2007). They typically

weigh 1–5 g (wet weight, without the tube). SF Ridgeia

are typically shorter, c. 5–10 cm in length, with a larger

aspect ratio and without a root-like posterior. They typi-

cally weigh 2–15 g (wet weight, without the tube).

Ridgeia symbionts are identical at the 16S rRNA level

among the different phenotypes and are closely related

to Riftia symbionts (approximately 99% identity of 16S;

Feldman et al. 1997; McMullin et al. 2003). LS and SF

Ridgeia dominate different microhabitats, with LS

Ridgeia commonly found on basalts around low temper-

ature vent fluids and SF Ridgeia commonly found on

chimneys with higher temperature fluids (Urcuyo et al.

1998; Andersen et al. 2006). Even when both phenotypes

occur in the same aggregation, they occupy different

microhabitats (SF Ridgeia are in the middle bathed in
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warmer fluids, whereas LS Ridgeia are on the periphery

in cooler fluids; personal observation). It has been pro-

posed that physical and chemical differences in their

microhabitats may be responsible for the morphological

difference in tubeworms (Black et al. 1994; Carney et al.

2007). For example, LS Ridgeia, with their root-like pos-

teriors, may flourish in cooler regimes as they are able

to access chemically reduced vent fluids in the subsea-

floor via the ‘roots’ (Urcuyo et al. 2003). Given the likely

differences in the nitrogen regime in these cooler and

warmer sites, we hypothesized that nitrogen utilization

may differ between the two phenotypes and among

vent sites, and that differences in the nitrogen source

will be manifested as differences in nitrogen metabo-

lism. Moreover, this would likely be reflected in differ-

ences in the stable nitrogen isotope ratios of the

association (which, in turn, is relevant to understanding

trophic structure among organisms living within or

near Ridgeia aggregations).

Here, we present the results of a study on nitrogen

metabolism by Ridgeia collected from the Main Endeav-

our Field (MEF) and the Axial hydrothermal vents dur-

ing expeditions in 2010 and 2011 (Fig. 1C). We sampled

both LS and SF Ridgeia phenotypes and determined

both nitrate and ammonium concentrations in Ridgeia

blood. Gene expression of key enzymes involved in

symbiont dissimilatory nitrate reduction (narG and

napA), symbiont assimilatory nitrate reduction (nasA),

as well as symbiont and host ammonium assimilation

(glnA and gltB) was investigated using quantitative

reverse transcription PCR (qRT–PCR). The following

experiments were aimed at addressing whether differ-

ences in nitrogen metabolism can be discerned from

differences in host blood nitrate and ammonium con-

centrations, as well as gene expression, between these

two phenotypes recovered from geochemically distinct

sites. We specifically sought to determine whether

potential differences in the availability of nitrogenous

compounds within microhabitats influenced the utiliza-

tion of nitrogen sources by the Ridgeia symbiosis, and

whether there are consistent differences in the patterns

of gene expression and stable nitrogen isotope ratios

between the two phenotypes, which shed light on their

respective forms of nitrogen acquisition.

Materials and methods

Sample collection and environmental condition

SF and LS Ridgeia tubeworms were collected from

hydrothermal vent sites at the Main Endeavour Field

(MEF) on the Juan de Fuca (JDF) and the Ashes vent

field at the Axial volcano caldera (Fig. 1C). Both SF and

LS Ridgeia were recovered from diffuse vents found

near the Hulk massive sulphide deposit (located at the

northern edge of the MEF) using the DSV Alvin during
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Fig. 1 (A) Photograph of Ridgeia piscesae tubeworms flourishing at a vent along the Juan de Fuca Ridge (courtesy of V. Tunnicliffe

and CSSF); (B) A schematic of a generic Ridgeia piscesae tubeworm, illustrating gross morphology and the general locations of the

plume, vestimentum, and trophosome, the organ housing the chemoautotrophic symbionts deep within the worm; (C) Map showing

the locations of the Axial and Main Endeavour vent fields, from which Ridgeia were collected. Adapted from (Ding et al. 2001).
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dive 4619 in July 2010. Temperatures among the SF Rid-

geia were approximately 17 °C, while temperatures

among the LS Ridgeia were approximately 5 °C. Sam-

ples from the Ashes vent field were collected using the

remotely operated vehicle Doc Ricketts during dives 257

and 258 in July 2011. At Ashes, LS Ridgeia and SF Rid-

geia were found in the same aggregations, and LS Rid-

geia were characteristically found along the periphery

while SF Ridgeia were in the middle (i.e. closer to the

venting fluid). Temperatures recorded at Ashes were

approximately 24 °C among the SF Ridgeia and approxi-

mately 5 °C among the LS Ridgeia. To mimic vent-like

conditions during return to the surface (thereby mini-

mizing the changes in mRNA transcripts), all Ridgeia

tubeworms collected were placed into a novel sampling

device consisting of a 5-L container prefilled with red-

dyed seawater containing 150 lM sulphide at pH 6.5.

The water-tight (though not pressure-tight) container

was kept sealed and insulated during descent, and the

red food colouring allowed us to visually confirm that

sulphidic water remained around the samples during

ascent and recovery. Upon recovery, the sulphide con-

centration was approximately 40% less due to dilution

while sampling. On board ship, samples were rapidly

dissected into gill, vestimentum, and trophosome (with-

out the body wall), and sections were flash-frozen in

liquid nitrogen for RNA extraction.

Nitrate and ammonium concentrations in blood

Vascular and coelomic fluids were taken from select

Ridgeia by using a fresh syringe and 28-ga. hypodermic

needle. Freshly collected blood was flash-frozen in liquid

nitrogen. Blood nitrate concentrations were determined

based on the integrated peak area on a mass spectrometer

by using the denitrifier method (Sigman et al. 2001). Stan-

dards of known amounts of nitrate were used to calibrate

the mass spectrometer’s response. Analyses were carried

out in the laboratory of Prof. Dr. Moritz Lehmann at the

University of Basel, Switzerland. Blood ammonium con-

centrations were determined by diluting blood samples

to 1:10 or 1:100 in DI water, and then using standard

flow injection analyses with the indophenol method (Lee

& Childress 1994) at the Marine Science Institute Analyti-

cal Lab at University of California, Santa Barbara.

RNA extraction and reverse transcription

Four LS and six SF Ridgeia from the MEF site, and four

of each phenotype from the Axial site, were used for

RNA extraction. Approximately 25 mg of flash-frozen

trophosome and plume tissues from each individual

were dissected on dry ice and equilibrated in 500 lL of

RNAlater�-ICE (Ambion) at 4 °C overnight. Total RNA

was extracted from each tissue using RNeasy mini kit

(QIAGEN), following the manufacturer’s protocol. After-

wards, RNA was eluted in 50 lL of RNase-free water.

RNA was treated with DNase using the Turbo DNA-free

kit (Ambion) and further checked for DNA contamina-

tion by PCR using primers for R. piscesae host glutamine

synthetase (GS), as described below. RNA integrity was

assessed on a 2100 Bioanalyzer (Agilent). The purity and

quantity of RNA was checked using a fluorometric assay

for RNA concentrations (Qubit RNA BR assay on a Qubit

2.0 fluorometer; Life Technologies). Upon completion, up

to 1 lg of total RNA was reverse-transcribed to cDNA

by using qScript cDNA SuperMix (Quanta Biosciences),

containing random primers and oligo(dT) primers.

cDNA was stored at �80 °C for further use.

Primer design and validation

Quantitative RT–PCR primers were designed for select

functional genes that represent key nitrogen metabo-

lisms, as well as for candidate reference genes (Table 1,

Fig. 2). Specifically, to interrogate nitrate utilization by

the symbiont, we designed primers for genes encoding

dissimilatory nitrate reductases (narG and napA) and

assimilatory nitrate reductase (nasA). To investigate

ammonium assimilation by symbionts and hosts, we

designed specific primers for symbiont and host gluta-

mine synthetase and glutamate synthase (glnA and gltB,

respectively). Four housekeeping genes (HKG) including

rpoA, cysG, gyrB, and mraY were carefully chosen from

different functional groups to avoid coregulation

(Table 1). Because symbionts of tubeworm genera exhi-

bit high DNA sequence identity, all symbiont primers

were designed against the published metagenomes of

Riftia pachyptila and Tevnia jerichonana symbionts (Mark-

ert et al. 2007; Gardebrecht et al. 2011) using the software

program Primer Premier 5 (Premier Biosoft Interna-

tional), and then checked via the BLASTn for specificity.

Ridgeia host primers were based on ESTs recovered in a

previous study (available via www.ncbi.nlm.nih.gov/;

Nyholm et al. 2008). To validate their efficiency in

Ridgeia, endpoint PCR was performed using all primers

and cDNA as template, and the resulting amplicons

were confirmed by Sanger sequencing.

Quantitative RT–PCR

Quantitative RT–PCR (qRT–PCR) was performed using a

Stratagene Mx3005P realtime thermal cycler (Agilent

Technologies). Plasmid standards were made by cloning

target amplicons into pSC-B vectors (Strataclone Blunt

PCR Cloning Kit, Agilent Technologies) and then

sequenced to validate the inserts. Recombinant plasmids

were linearized by restriction enzyme HindIII digestion

© 2013 John Wiley & Sons Ltd
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and subsequently quantified using a fluorometric assay

(the Qubit DNA BR assay; Life Technologies). Standards

were constructed by serial dilution of linearized plas-

mids. The qRT–PCR reaction mixture (20 lL) contained a

final concentration of 19 PerfeCTa SYBR Green FastMix

(Quanta Biosciences), 300 nM of each primer, and 2 lL of

template (32–122 ng). Three-step qPCR cycles were used:

95 °C for 10 min; 40 cycles of 95 °C for 30 s, 60 °C for

30 s, 72 °C for 30 s; followed by melting curve analyses

to confirm the absence of nonspecific amplification. Fluo-

rescence data collected during the annealing stage of

amplification were analysed by the manufacturer’s soft-

ware. Efficiency was calculated based on the standard

curves. Inhibition in samples for qRT–PCR was tested by

comparing Ct values of plasmid standard-only reaction

to plasmid spiked with cDNA sample. No template

controls (NTC) and non-RT controls were run under

same conditions to ensure the absence of contamination

and genomic DNA, respectively.

Reference gene validation and data analyses

To compare samples, host and symbiont functional gene

expressions were normalized to a reference gene. For the

host, the b-actin gene ACTB was used as a reference (as in

Nyholm et al. 2012). For the symbionts, four bacterial

reference genes were considered, and two different algo-

rithms were used to evaluate their expression stability,

geNorm (Vandesompele et al. 2002) and NormFinder

(Andersen et al. 2004). Raw Ct values were log-transformed

to copy numbers using standard curves of the four HKG

as input data for geNorm calculation. The gene expression
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NO NIR
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NO
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Fig. 2 Schematic representing potential modes of nitrogen acquisition and utilization based on genes encoded in the symbiont genomes

of Riftia pachyptila and Tevnia jerichonana (Markert et al. 2011, Gardebrecht et al. 2012). Enzymes (capitals) and corresponding structural

genes (bold italics; first capital letter as the large subunit) are listed in grey boxes. Dashed lines indicate metabolite diffusion or transport.

Question marks denote genes missing in the metagenomes. NAP: periplasmic nitrate reductase, NIR: periplasmic nitrite reductase, NOR:

nitric oxide reductase, NOS: nitrous oxide reductase, NAR: periplasmic nitrate reductase, NAS: assimilatory nitrate reductase, NIR: cyto-

plasmic nitrite reductase and NRF: direct reduction from nitrate to ammonium. For ammonium assimilation genes, see Table 1.
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stability value (M) for each gene was then calculated.

Log-transformed copy numbers were calculated, and the

housekeeping genes were then ranked according to the

intra- and intergroup expression variation.

Raw Ct values of bacterial functional genes and HKG

were transformed to copy numbers based on standard

curves. Average copy numbers of triplicates from func-

tional genes were normalized to those of the validated

reference gene(s) for the hosts and the symbionts,

respectively. The normalized data were used to calcu-

late the fold change between R. piscesae phenotypes and

vents. The nonparametric Mann–Whitney U-test was

used to calculate significance between samples.

Nitrogen isotopic analyses

Trophosome tissues of SF Ridgeia from Axial and MEF

and LS Ridgeia from MEF were freeze-dried, acidified,

and then homogenized by bead-beating prior to d15N
determination. Approximately 0.5 mg of homogenized

tissue was analysed by combustion in an elemental

analyzer coupled to an isotope ratio mass spectrometer.

Values were normalized using internationally calibrated

standards, N2, with a precision of approximately 0.1&.

Results

Nitrate and ammonium concentrations in blood

Nitrate was determined to be 109.8 � 7.8 lM in LS Rid-

geia blood (n = 5) and 91.8 � 6.2 lM in SF Ridgeia blood

(mean � SE; n = 4). Nitrate concentrations were not

significantly different between the two phenotypes

(P > 0.05, Mann–Whitney U-test). Ammonium detected

in the Ridgeia blood ranged from approximately 119 � 4

(mean � SE; n = 3) for the SF Ridgeia to >200 lM for the

LS Ridgeia (n = 3). We are unable to provide a mean and

SE for the LS Ridgeia blood samples because they were

beyond the upper range of the analyzer (200 lM), and
samples were expended prior to better quantification by

dilution.

Endpoint PCR

Endpoint PCR products of nitrogen genes and refer-

ences were sequenced using both forward and reverse

primers and Sanger sequencing. The direct sequencing

results matched sequences from R. pachyptila and

T. jerichonana symbiont metagenomes (Gardebrecht

et al. 2011). Symbiont primers did not show cross-reac-

tivity with host plume RNA. Via endpoint PCR, we

did not detect genomic DNA contamination in the

total RNA treated with DNase. Moreover, all non-RT

controls did not amplify. cDNA, however, amplified

with host glnARid primers showed a single band of

264 bp on an agarose gel. Because glnARid primers

cross intron(s), yielding a PCR amplicon near 1000 bp

using genomic DNA as template, these results con-

firmed that no genomic DNA was present in the RNA

samples.

Standard curve and efficiency for qRT–PCR

Plasmids containing target gene inserts were used as

standards. Ten-fold serial dilutions of standards were

included to cover a range of Ct from approximately

10–30. Efficiencies of the assays ranged from 90% to

111% (Table 2). Specific amplification was confirmed by

melting curve analyses, which revealed a single melting

peak for each primer set, indicating a single PCR prod-

Table 2 Percent efficiency and other details for the quantitative qPCR assays. Data shown are derived from analyses of the standard

curves

Gene Efficiency (%) Y-intercept R2 Ct of NTC* Slope Threshold

narG 106.2 35.00 1.000 No Ct �3.182 0.8205

napA 101.7 33.84 0.999 No Ct �3.283 0.6752

nasA 102.1 34.06 1.000 No Ct �3.272 0.9635

glnAsym 107.0 33.89 1.000 No Ct �3.165 0.7804

gltBsym 104.0 33.53 0.999 No Ct �3.229 0.6907

rpoA 109.0 35.25 0.999 38.75 �3.123 0.7765

cysG 105.5 33.37 1.000 No Ct �3.197 0.9201

gyrB 107.6 33.18 1.000 No Ct �3.153 0.7976

mraY 101.2 34.13 1.000 No Ct �3.293 0.7947

glnARid 91.6 37.15 0.998 No Ct �3.541 0.8929

gltBRid 103.7 34.35 1.000 39.99 �3.237 0.8183

ACTB 103.2 35.23 0.997 No Ct �3.248 0.7355

*No template control.
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uct. Electrophoresis analysis of all amplicons from

qPCR also showed a single band with the expected

sizes. No primer dimers were observed.

Reference genes and normalization

Both mraY and rpoA were found to be the best refer-

ence genes by geNorm, while mraY was the best refer-

ence as determined by NormFinder (NF; Fig. 3).

Notably, the same patterns of relative gene expression

were observed via both genes, supporting the use of

either normalization method. All functional genes from

symbionts at the Axial site were normalized to mraY

using NF. Due to limitations in template, functional

genes from symbionts at the MEF were normalized to

mraY. Host genes from all samples were normalized to

the b-actin gene (ACTB) as previously described (Ny-

holm et al. 2012).

Nitrate reductase gene expression in the symbionts

The periplasmic nitrate reduction gene, napA, was

expressed at similar levels in the LS and SF symbionts

from both the Axial and MEF (Fig. 4). On average,

napA expression was approximately 3-fold higher than

the reference gene, mraY, in both phenotypes at both

sites (Fig. 4). The nitrate respiration gene, narG, was

detected in symbionts from both LS and SF Ridgeia at

the MEF (approximately 2-fold higher than mraY gene

on average). However, narG was below the limits of

detection in Ridgeia symbionts from the Axial site

(Fig. 4A). The expression of assimilatory nitrate reduc-

tase (nasA gene) was not detected in any individuals

from any sites.

Ammonium assimilation gene expression in the
symbionts

Genes involved in ammonium assimilation were highly

expressed in the LS and SF symbionts at both vent sites

(Fig. 4). However, LS Ridgeia symbionts had the highest

expression of glutamine synthetase gene, glnAsym,

68- and 31-fold higher than periplasmic nitrate reductase

gene, napA, at the Axial and MEF, respectively. In con-

trast, SF Ridgeia symbionts showed 4- and 11-fold higher

expression of glnAsym than napA on average at the Axial
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and MEF, respectively. glnAsym expression was signifi-

cantly different between LS and SF symbionts at the Axial

site, with LS being higher (P < 0.05; Fig. 4A). Expression

of glutamate synthase, or gltBsym, in LS symbionts was

15- and 6-fold higher than napA at the Axial site and the

MEF, respectively. However, expression of gltBsym in SF

Ridgeia symbionts was only 3- and 2-fold higher than

napA at the Axial site and the MEF, respectively. Expres-

sion of gltBsym was significantly different between LS and

SF Ridgeia symbionts at the Axial site (P < 0.05; Fig. 4A).

However, SF Ridgeia symbiont genes showed no signifi-

cant differences across the two sites.

Ammonium assimilation gene expression in hosts

Ridgeia glutamine synthetase (glnARid) and glutamate

synthase (gltBRid) genes were expressed in all individu-

als at both sites (Fig. 5). Host glnARid showed compara-

ble expression in both LS and SF Ridgeia plume/

trophosome tissues across vent sites. However, gltBRid

showed a significant difference in expression between

LS and SF hosts at the Axial site (P < 0.05; Fig. 5). No

significant difference was found for glnARid and gltBRid

in plume and trophosome tissues at the MEF.

Nitrogen isotopic analysis of tissue

d15N was measured on trophosome tissue samples from

SF (n = 13) and LS (n = 10) Ridgeia at MEF, as well as

from SF Ridgeia at Axial (n = 6). SF Ridgeia at Axial had

the lowest d15N, �2.7& � 0.6, while d15N of SF Ridgeia

at MEF were markedly higher, +1.6& � 0.3 (Fig. 6). LS

Ridgeia at MEF had the highest d15N (+3.7& � 0.5).

d15N was depleted in SF Ridgeia trophosome tissues

from both sites, relative to the nitrogen isotopic compo-

sition of the NHþ
4 (+6.7& and +3.6& at Axial and MEF

vent fluids, respectively) and NO�
3 (+5.6& in seawater

across sites; Fig. 6; Bourbonnais et al. 2012). However,

LS Ridgeia exhibited the same d15N as NHþ
4 in the vent

fluids at MEF.
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Fig. 6 Stable nitrogen isotope ratios (d15N) of SF Ridgeia troph-

osome tissues from Axial (n = 6) and Main Endeavour Field

(MEF; n = 13), as well as Ridgeia LS trophosome tissues from

MEF (n = 10). Due to technical challenges, we were unable to

recover the data from LS Ridgeia collected at Axial, and as such

they are not presented here. d15N values for diffuse vent

ammonium and nitrate measured previously at these sites are

also shown(Bourbonnais et al. 2012). Seawater NHþ
4 = d15N of

diffuse vent ammonium, SF Ridgeia = d15N of SF Ridgeia troph-

osome, LS Ridgeia = d15N of long-skinny Ridgeia trophosome

and Seawater NO�
3 = d15N of diffuse vent nitrate.
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Discussion

In general, the most readily available form of

(inorganic) nitrogen in the deep sea –including around

vents — is nitrate, which is found at approximately

40 lM worldwide. Many bacteria rely on nitrate for bio-

synthesis of nitrogen-containing compounds, typically

via assimilatory nitrate reductase (Richardson et al.

2001; Kraft et al. 2011). Curiously, our data suggest that

nitrate was not assimilated by Ridgeia symbionts via

assimilatory nitrate reductases. Moreover, Nas has not

been detected in previous studies of transcripts or pep-

tides, even though nasA was found in the genome

(Markert et al. 2007; Robidart et al. 2008; Gardebrecht

et al. 2011). It has been previously shown that ammo-

nium can repress nasA expression (Moreno-Vivi�an et al.

1999); thus, symbiont nasA may be absent due to the

abundance of ammonium in the host blood from exoge-

nous sources. Nevertheless, both the blood nitrate con-

centration (>90 lM) and symbiont gene expression data

suggest that nitrate was being acquired and reduced.

Indeed, the presence of nitrate in the blood at concentra-

tions above those of the surrounding seawater also sug-

gests that nitrate is being actively acquired by the host

for use by the symbionts (the host, to our knowledge,

cannot use nitrate for growth or biosynthesis). It has been

suggested that Riftia possesses a nitrate-binding compo-

nent in its blood (Hahlbeck et al. 2005), and this may also

be true in Ridgeia.

Regardless, the periplasmic nitrate reductase napA

was consistently expressed in symbionts across sites

and phenotypes, and narG was also detected in the

MEF Ridgeia, implicating the symbionts in nitrate

metabolism. These data suggest that both phenotypes

are engaged in denitrification. During denitrification,

nitrate is typically reduced by these reductases to nitrite

and ultimately to N2. Although both Nar and Nap are

involved in denitrification, they probably have different

roles. Nar conserves energy via the generation of a

proton motive force across the cytoplasm membrane

(Richardson et al. 2001). In Ridgeia symbionts, NarG is

possibly involved in catalysing the oxidation of sul-

phide using nitrate as a terminal electron acceptor.

Nitrate respiration might ‘supplement’ oxygen under

hypoxic or anoxic conditions (Girguis et al. 2000) and

may reduce competition with the host for O2 (though

this remains to be thoroughly tested). Nap is canoni-

cally involved in redox balancing by disposing of excess

reductant for the reoxidation of NADH, especially dur-

ing fast growth under sufficient energy and oxygen

conditions (Richardson et al. 2001). In Ridgeia symbionts,

napA may be involved in redox balancing when meta-

bolic rates are high (Ridgeia are known to exhibit

high metabolic and growth rates, comparable to Riftia;

Urcuyo et al. 1998, 2007; Nyholm et al. 2012), or when

changes in the geochemical regime lead to physiological

redox imbalances (Johnson et al. 1988; Wankel et al.

2011). Alternatively, nitrate reduction by Nap or Nar

may be involved in the production of ammonium, anal-

ogous to dissimilatory nitrate reduction to ammonium,

or DNRA (Simon 2002; Kraft et al. 2011). Although the

gene encoding for Nir? (nrfA, Fig. 2), a cytochrome c

nitrite reductase considered to be diagnostic for canoni-

cal DNRA (Simon 2002; Kraft et al. 2011), has not been

identified in the Riftia and Tevnia symbiont genomes,

our data reveal patterns of gene expression that offer

another plausible mechanism by which ammonium

resulting from the dissimilatory reduction of nitrate

might be assimilated by the symbionts. As mentioned,

both dissimilatory nitrate reductases napA and narG,

as well as symbiont ammonium assimilation genes

glnAsym and gltBsym, were expressed (Fig. 4). Ridgeia

may perform DNRA without nrfA, for example, possi-

bly via periplasmic nitrate reductases, a transmembrane

nitrite/nitrate transporter such as narK, cytoplasmic

nitrite reductases and ammonium assimilatory path-

ways. Evidence for the expression of this assemblage of

genes has been found in tubeworm symbiont metage-

nomes, transcripts, and peptides (Markert et al. 2007;

Robidart et al. 2008; Gardebrecht et al. 2011), including

Ridgeia (Nyholm et al. 2008) and other vent chemoauto-

trophic symbioses (Sanders et al. 2013). Indeed, mass

balance and isotopic studies have implicated Riftia sym-

bionts in DNRA (Girguis et al. 2000), although this pre-

vious study did not examine gene or protein expression

to establish the physiological mechanisms underlying

the observed DNRA. This represents a potential mecha-

nism for assimilation of periplasmically reduced nitrate

via the shuttling of nitrite into the cytoplasm for reduc-

tion to ammonium. Due to a lack of sufficient mRNA,

we were unable to complete our assays for nitrite re-

ductases, though they were detected in the cDNA via

endpoint PCR (data not shown). As such, further stud-

ies are required to confirm whether ammonium

observed in these Ridgeia was indeed produced via

DNRA. We suggest that the confluence of these patterns

in nitrogen gene expression among these taxa may sug-

gest a convergence of traits that enable vent animal–

microbial symbioses to use nitrate as both an oxidant

and nitrogen source for biosynthesis, and future studies

should further elucidate the details of this hypothesis.

Even though the aforementioned patterns of gene

expression represent a plausible means by which an

association can acquire nitrogen, acquisition of exoge-

nous ammonium is another potential source of nitrogen

at vents. Ammonium is present at both Axial (approxi-

mately 14 lM) and the MEF (>400 lM) sites, which are

concentrations higher than many other basaltic vents
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(Minic & Herv�e 2003), as well as the ambient seawater

(Bourbonnais et al. 2012). These are, however, the

concentrations in pure vent fluid, and they will be

markedly lower in the dilute fluids that surround the

animal communities. Nevertheless, Ridgeia may be able

to assimilate exogenous ammonium, which in turn may

lead to lower rates of nitrate reduction. This is consis-

tent with the very high levels of expression in symbiont

glnAsym, which are substantially higher than napA (up

to 68-fold in the LS Ridgeia and 11-fold in the SF Rid-

geia), although caution is always warranted when using

gene expression levels as a representation of activity

(and, as such, glnA expression does equal exogenous

ammonia assimilation). While ammonium transporters

are likely a better proxy for assimilation from the envi-

ronment, their expression is known to be influenced by

changes in environmental pH (which influences ammo-

nia/ammonium speciation; Nakhoul et al. 2010). Given

the dynamics of pH found at hydrothermal vents, we

posited that expression of these transporters is heavily

influenced by the dynamic changes for environmental

pH. As such, we quantified both glutamine synthetase

and glutamate synthase, for which expression was strik-

ingly different among Riftia tubeworms living in ammo-

nia-rich and poor environments (Robidart et al. 2011,

Table S2).

Although SF and LS Ridgeia blood ammonium

concentrations are comparable to those measured in

Riftia (recovered from a low ammonium environment;

De Cian et al. 2000), there are striking differences in the

nitrate concentrations of Ridgeia and Riftia blood. As

mentioned, Ridgeia concentrations were approximately

100 lM, whereas Riftia blood nitrate concentrations are

typically between 300 nM and 3 mM (Hahlbeck et al.

2005). Also, in a previous study, Riftia from the Guay-

mas Basin (a sedimented vent field) took up ammonium

in laboratory-based high-pressure studies and had

much lower levels (9–24 times) of respiratory and

assimilatory nitrate reductases than Riftia from the

basaltic vents along the East Pacific Rise (Robidart et al.

2011).

In the light of these observations, we suggest that

Ridgeia symbionts and host are engaged in some degree

of ammonium assimilation from the environment. Of

course, gene expression data do not reveal whether this

ammonium is derived from symbiont nitrate reduction,

from urea degradation (as in De Cian et al. 2000), or

from exogenous organic sources, nor can one assume

that these are mutually exclusive. Nevertheless, the

substantially higher expression of ammonia assimilation

genes in LS Ridgeia, which are not exposed to higher

ammonia concentrations from vigorous venting around

their branchial gills, suggests that they may be better

poised to assimilate the ammonia from the deeper,

interstitial fluids, using their ‘roots’ to access these

fluids. This supposition is consistent with the observa-

tions presented here, but given the limitations of these

data, it cannot be well substantiated.

Many studies have employed stable isotopic composi-

tion of N-bearing compounds and tissues to shed light

on N sources and cycling mechanisms. In this study,

the d15N of SF Ridgeia at Axial were lower than those

found at MEF (�2.7& � 0.6 vs. +1.6& � 0.3; Fig. 6),

with d15NNH4 – d15NSF values of 9.4& and 2.0& at

Axial and MEF, respectively (Fig. 6). LS Ridgeia at MEF

showed the same d15N ratios as the exogenous ammo-

nium (+3.7& � 0.5). It is known that isotopic discrimi-

nation against 15N during assimilation of ammonium or

nitrate by microbes results in fractionation and the

formation of biomass having a 15N/14N (or d15N) lower

than that of the substrate (Wada & Hattori 1978; Wada

1980; Cifuentes et al. 1989; Montoya et al. 1991; Montoya

& McCarthy 1995). For nitrate assimilation, the fraction-

ation (or 15e, which is equal to d15Nsubstrate – d15Nproduct)

stemming from nitrate reduction (e.g. NAR) is generally

5& when nitrate is not limiting (Waser et al. 1998; Nee-

doba & Harrison 2004; Granger et al. 2010). Isotopic

fractionation by ammonium assimilation is complicated

by a number of chemical and biological processes, for

example, isotopic equilibrium between ammonium and

ammonia, as well as kinetic isotope effects by either of

two intracellular ammonium assimilation pathways

(Hoch et al. 1992; Waser et al. 1998). Nevertheless, the

apparent 15e of ammonium assimilation does relate to

environmental ammonium availability, with 15e values

of approximately 27& when ammonium is high (e.g.

tens of mM) and 15e values of approximately 4& when

ambient ammonium is low (<1 mM). Collectively, these

isotope data are consistent with less ammonium assimi-

lation by SF Ridgeia. This is also consistent with the pat-

terns of gene expression presented here. In aggregate

with the gene expression data, these data suggest that

LS Ridgeia are acquiring more ammonium directly from

the environment, while SF Ridgeia may acquire N for

biosynthesis via a unique dissimilatory nitrate reduction

to ammonium, though as mentioned, this hypothesis

remains to be substantiated. Of course, in these

dynamic environments, N is assimilated by a combina-

tion of pathways – and the observed isotopic differences

in the intact associations may simply be an integration

of changes in physiological activity in response to

changing environmental conditions.

We also observed differences in gene expression

between the SF and LS phenotypes recovered from both

sites. LS Ridgeia consistently had higher glnAsym expres-

sion than SF Ridgeia. Moreover, LS Ridgeia symbionts at

the Axial site also exhibited higher glnAsym expression

than the in LS Ridgeia symbionts from the MEF. If one

© 2013 John Wiley & Sons Ltd

1554 L. LIAO ET AL.



assumes that the warmer, more chemically reduced

fluids around SF Ridgeia are more replete with ammo-

nium, these data suggest that elevated expression of

glnAsym in LS Ridgeia may reflect an increase in enzyme

production to facilitate the acquisition of ammonium.

Consistent with this suggestion is the aforementioned

higher expression of glnAsym in LS Ridgeia symbionts.

Previous studies have shown that the expression of

genes involved in nitrogen metabolism is, in part, gov-

erned by environmental nitrate and ammonium concen-

trations (Reitzer 2003). However, it is important to note

that these studies examined free-living microbes in lab-

oratory cultures. Prior to the data presented here, no

study has attempted to characterize the relative influ-

ence of habitat variation vs. host phenotype on symbi-

ont nitrogen metabolism. The resulting data herein

reveal the complexities of nitrogen metabolism in the

Ridgeia symbioses and underscore the physiological

variations that may be seen in a host’s microbiome,

even among identical symbiont types living in associa-

tion with two different host phenotypes. These data

clearly suggest that all Ridgeia hosts take up nitrate, and

their symbionts may use that nitrate via dissimilatory

pathways as an electron acceptor for sulphide oxida-

tion. However, there is circumstantial evidence to sug-

gest that SF Ridgeia may also direct this nitrate to the

production of ammonium for biosynthesis and growth

via a process analogous to canonical DNRA. In contrast,

the high representation of ammonium assimilation tran-

scripts among LS Ridgeia suggests a sizable, if not

major, role of exogenous ammonium as a nitrogen

source for the symbiosis, especially in light of the rela-

tively high concentration of ammonium at these vents.

While additional investigations will be required to

determine the fate of environmentally-derived nitrate

and ammonium among both LS and SF Ridgeia, it is

worth considering that the observed metabolic flexibil-

ity within the symbionts is analogous to the phenotypic

plasticity seen in their hosts. This flexibility may be

advantageous for the association’s fitness, enabling Rid-

geia and its symbionts to colonize and thrive in a broad

range of habitats in this physiologically challenging

environment.
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