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Harnessing energy from marine productivity using
bioelectrochemical systems
Peter R Girguis1, Mark E Nielsen1 and Israel Figueroa
Over the past decade, studies have shown that devices called

microbial fuel cells (MFCs) can harness electricity from

microbially mediated degradation of organic carbon, in both lab

cultures and natural environments. Other studies have shown

that MFCs can harness power from coastal and deep ocean

sediments, as well as from plankton, without any fuel

supplementation or microbial inoculation. The fuel for these

systems is organic matter resulting from oceanic primary

productivity. Models suggest that MFCs may operate for

decades on endogenous organic carbon. In light of their

capacity to generate power in natural milieus by tapping into

biogeochemical cycles, MFCs may one day provide an efficient

means of generating power (or high value biofuels) directly from

marine productivity.
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Introduction
Recent years have been a watershed for the understand-

ing of microbially mediated metal cycling. In particular,

there has been an explosion of research on microbial fuel

cells (or MFCs). MFCs are systems that harvest electrons

resulting from microbial metabolism [1,2]. They have

been used to generate power from a variety of organic-

rich matter (e.g., wastewater, compost, and sediments).

There is growing interest in using MFCs for alternative

energy generation, or as systems for directing and stimu-

lating microbial processes for industry (discussed in detail

later).

Some of the earliest environmental MFC deployments

were in marine sediments, and recent studies have used

MFCs to generate power from seawater. In light of

these studies, MFCs may offer an opportunity to harness
Current Opinion in Biotechnology 2010, 21:252–258
significant amounts of energy directly from natural marine

biogeochemical cycles. Here we present a brief overview

of how MFCs and other bioelectrochemical systems

(BESs) harness energy from marine productivity, and

which environmental factors govern the efficacy of this

approach. We also discuss how much energy is potentially

available via bioelectrochemical approaches, limitations

of the current technology, and current research directions

that may enable this technology to play a significant role

in supporting our energy needs.

Marine primary productivity
Primary productivity is the conversion of inorganic carbon

to organic carbon by biological processes, primarily photo-

synthesis. Nearly half the world’s primary productivity

occurs in the oceans [3] and current estimates suggest that

50 gigatons of carbon are produced annually [4]. Coastal

regions (ocean with a water depth <200 m) have a total

area of about 36 � 106 km2
, which is about 3.5 times the

area of the entire United States. They account for nearly

20% of oceanic primary productivity. Sunlight is the

primary source of energy for photosynthesis (providing

reducing potential for carbon fixation). Though the

annual mean solar power density is approximately

168 W m�2 [5], photosynthetic organisms capture a very

small fraction of this energy (<1%; [6]). Regardless, this

productivity forms the basis of the marine food web,

supporting nearly all organisms in the water column

and on the seafloor. Recent studies using radiocarbon

isotopes have shown that �85% of photosynthetically

derived carbon is consumed by organisms in the water

column, with the remainder being deposited in the

underlying marine sediments [7–9]. Much of the organic

carbon deposited in sediments consists of recalcitrant

chitin, keratin and some lipids, and can persist for mil-

lennia. Through this deposition, marine sediments are

considered among the largest global sinks of organic

matter [10].

Microbial extracellular electron transfer
Fundamentally, all life relies on the movement of elec-

trons from one compound (a reductant such as organic

carbon) to another compound (the oxidant) for generating

power to do work. All animals (multicellular organisms)

use organic carbon as a reductant and, ultimately, oxygen

as an oxidant. Notably, many microbes are capable of

using other oxidants such as nitrate, sulfate and carbon

dioxide. Recently, scientists have found that some

microbes shuttle electrons from organic carbon catabo-

lism to insoluble mineral oxides outside the cell [11–14].
www.sciencedirect.com
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This physiologically stunning feat, referred to as extra-

cellular electron transfer (or EET), is enabled by a

number of mechanisms that have been the subject of

much investigation in recent years. Briefly, some

microbes use organic redox-active molecules to shuttle

electrons to insoluble mineral oxides [15,16]. Other

microbes are replete with outer membrane cytochromes

(membrane bound proteins) that can shuttle electrons to

the mineral oxides [17]. Recently, microbes have been

found to produce ‘nanowires’, or conductive filamentous

structures, that shuttle electrons directly to the mineral

oxides over relatively long distances [18,19].

While it was originally thought that this physiological

capacity was limited to a few, unique anaerobic microbes,

EET has now been observed in many microbes isolated

from a wide variety of environments. Microbes capable of

EET have been found natively in wastewater [20–23],

compost [24], soils [25–29], acid-mine drainage [30],

seawater [31–40,41��], and industrial waste streams

[42–47]. Strains of model microorganisms such as Shewa-
nella oneidensis, Geobacter sulfurreducens and Bacillus subtilis
are known to exhibit EET to varying degrees [48–50].

Ecologically, the role of EET remains hotly debated as

some microbes clearly depend on EET for energy metab-

olism, while others may employ EET for anti-microbial

warfare (anti-microbial molecules are often redox active

[25,51,52]).

Microbial fuel cells and other
bioelectrochemical systems
By definition, fuel cells are devices capable of converting

chemical energy to electrical energy without combustion.

By analogy, MFCs rely on catabolic activity of microor-

ganisms to convert chemical energy into electrical energy

[53]. This conversion is enabled by spatially separating

redox half-reactions so that electrons from oxidation reac-

tions at an anode flow through a circuit to a cathode (the site

of reduction reactions). Anode-hosted microbes are typi-

cally anaerobes that oxidize reduced chemical species such

as organic carbon and transfer electrons to the anode,

producing current that may be used to do work (e.g., charge

batteries or power a sensor). Typically, reduction of dis-

solved oxygen at the cathode balances the oxidation reac-

tions at the anode (although other terminal electron

acceptors have been investigated; [54–56]). Recently

investigators have observed that microbes growing on

the cathode may potentially use it as an electron donor

[54,57]. In these systems, electrons are harvested by the

microbes to regenerate reducing equivalents, which pro-

vides reducing power for synthesizing compounds such as

hydrogen [57]. Our understanding of microbially mediated

electrode oxidation is limited, and ongoing research is

aimed at better understanding this physiological capacity.

Reports of MFCs date to the early 20th century [58],

when investigators employed toxic chemical mediators to
www.sciencedirect.com
facilitate electron shuttling to the electrode. The discov-

ery that microbes capable of EET can shuttle electrons to

the anode of a microbial fuel cell [59] spawned a new

surge of research on ‘mediatorless’ MFCs. Some of the

earliest ‘mediatorless’ MFC studies were in marine estu-

arine sediments, where systems were deployed across

naturally occurring redox gradients at the sediment–sea-

water interface [60,31–33]. Briefly, oxygen is typically

present in the overlying water but is depleted in marine

sediments. Anaerobic microbes in the sediments use

alternative oxidants – including the MFC anode – to

support organic matter degradation. Thus an anode bur-

ied in marine sediments, electrically connected to a

cathode in the overlying water, generates current (a full

review of benthic MFCs may be found in [61]). Investi-

gators have consistently observed continuous, uninter-

rupted power generation in every organic-rich sediment,

though at modest power densities (ca. 28 mW/m2; [32]).

In more recent studies, investigators developed cham-

bered MFC systems in which the anode was enclosed in a

chamber that was placed atop the sediments to achieve

chemical equilibrium with the sediment porewaters

[36,38��,62]. They observed significantly higher power

densities for the duration of the experiment owing to

improved mass transport within the chamber (ca.

140 mW/m2; [38��]).

As mentioned, much of the energy from photosynthetic

primary productivity is cycled in the water column. To

investigate the feasibility of accessing this carbon for power

generation, investigators conducted a series of experiments

wherein they used fresh plankton as the fuel for a labora-

tory MFC [37��,41��]. In their experiments, roughly 80% of

the organic carbon added as fresh substrate was degraded

over two months of incubation. The rate of degradation was

significantly greater in the active MFC versus the control

MFC (in which electrodes were electrically isolated).

These data underscore the capacity of MFCs to stimulate

organic matter degradation. A subsequent study showed

that microbes colonizing the plankton-fed MFC anodes

were phylogenetically allied to those recovered from mar-

ine sediments, despite the lack of sediments in these

incubations [41��]. Moreover, the observed ecological suc-

cession of bacteria during the course of the experiment

suggest that varying anode potential can maximize current

generation by selecting for different microbes that catabo-

lize different pools of organic carbon. The capacity for

these microbial communities to degrade nearly 80% of the

organic carbon is promising, and the authors suggest that

plankton-fed MFCs may be a viable means of power

production. In particular, the use of plankton-enriched

seawater alleviates the issue of diffusion limitation to

and from sediment-hosted anodes. The authors suggest

that pre-inoculated electrodes may increase coulombic

efficiency by an order of magnitude since the microbial

community might be able to rapidly utilize labile carbon in

power production [62].
Current Opinion in Biotechnology 2010, 21:252–258
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To our knowledge, the experiments by Reimers and co-

workers are the only plankton MFC experiments to date.

Other studies describe MFCs which use novel membrane

configurations so that they could be deployed in the water

column [63]. However, these experiments used S. onei-
densis and refined substrates as fuel, so it is difficult to

speculate about the performance of this system in natural

settings.

Scalability of marine MFCs and factors
limiting power generation
The studies described above unequivocally demonstrate

that power can be harnessed from seawater and marine

sediments. Investigators have alluded to the potential of

environmental MFCs in harnessing significant amounts

of energy from global biogeochemical cycles at a com-

mercially viable scale. However, little research has been

done in this area and no pilot scale studies have been

conducted to examine the scalability and viability of this

approach. Here we provide a model wherein we estimate

the amount of power that may be harnessed by sediment-

hosted and plankton-fed MFCs deployed to capture 1%

of total productivity in coastal environments (Figure 1).

1% was chosen because the feasibility of such deploy-

ments remains unknown, and this percentage allows one
Figure 1

Model of energy available from MFCs via the marine carbon cycle. Solar inp

Partitioning of primary productivity is 85 and 15% to the water column and

seafloor is remineralized through diagenesis (the ‘labile’ fraction) and about

depict the theoretical maximum energy that may be harnessed from these po

cathode, a yield of 4 electrons per carbon oxidized (CH2O to CO2) and cou
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to easily calculate power generation from larger systems.

These calculations are based on the assumption that (A)

annual production in those waters is 9 gigatons carbon per

year [4], (B) 85% of the organic carbon is recycled in the

water column, while 15% is exported to the sediments

[64], (C) coulombic efficiencies of environmental MFCs

range between 10 and 65% [37��,62], (D) the potential

between anode and cathode is 0.35 V, and (E) plankton

MFC operation does not adversely affect sediment MFC

operation. Based on these assumptions we determined

that 2.5–16 TW h/yr and 0.3–1.8 TW h/yr of energy can

be harnessed from the water column and sediment MFCs

respectively (Figure 1).

These estimates underscore the amount of energy that

flows through just 1% of coastal marine ecosystems, but do

not offer a realistic depiction of how much energy may be

captured annually. Let us consider a plankton-fed MFC

power plant consisting of a 3-m diameter reactor, with

a 40 km path length, and a volume of approximately

340,000 m3. If the average organic carbon concentrations

in seawater is 110 mM, and coulombic efficiencies range

from 10 to 65% [37��,62], and the pumping rate is 4 m3/s,

this reactor may produce between 5 and 35 MW h/yr.

However, pumping this volume of water at this rate –
ut is based on [5], primary productivity for coastal ocean is based on [4].

sediments, respectively [7]. About 70% of the carbon that reaches the

30% is buried [8]. Energy calculations for plankton and benthic MFCs

ols of carbon, and are based on a potential of 0.35 V between anode and

lombic efficiencies ranging from 10 to 65% [37��,62].

www.sciencedirect.com
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assuming no head pressure from elevation – would con-

sume at least 650 MW h/yr (assuming a pump efficiency of

70%, and accounting for the frictional losses attributable to

the pipe and electrodes using the Colebrook–White

equation; [65]). Thus, when using raw seawater as the fuel

it is impractical to expend energy on pumping. Alterna-

tively, if it were possible to mechanically or biologically

concentrate biomass from seawater, the power density

could be increased. As in Reimers et al. [37��], if one could

increase organic carbon concentrations by two orders of

magnitude, this same reactor may produce 1.7 GW h/y.

There are additional limitations in MFC technology that

are not captured in the previous models. In addition to

parasitic losses, existing data are mixed in terms of how

well MFC electrodes scale up [66,67]. This makes it

difficult to discern whether a large-scale MFC system

with many individual electrodes is practical. Moreover,

investigators have observed the deposition of elemental

sulfur on the electrodes of environmental MFCs reduces

performance over time [34]. Mitigating this phenomenon

may add significantly to the overall operating costs,

though this remains unconstrained. Biofouling may also

be problematic, though to date this not been an issue in

marine MFC deployments [36,38��].

Other approaches to harnessing energy from
marine productivity
Recent studies have examined the performance of photo-

trophic MFCs, in which mixed cultures of photosynthetic

microbes and EET-competent bacteria were used to

provide power from photosynthesis in a reactor [68�].
Contained systems such as these could be deployed in

coastal waters to convert solar energy to electricity by

coupling photosynthesis to EET at the anode. While

organic carbon is continuously replenished during the

day, the coulombic efficiency of these systems may be

diminished by photosynthetically derived oxygen

accumulation over time. One solution may be to use

anaerobic photosynthetic bacteria, such as purple and

green sulfur bacteria, to provide organic carbon without

the deleterious effects of oxygen on anaerobic processes

[69]. Although the maximum theoretical efficiency of

photosynthesis is 9%, which is lower than the efficiency

of 17% currently achieved by commercially available

photovoltaic cells [70], the ability of algae to utilize light

over a wider range of wavelengths and intensities [71]

may enable these systems to be more cost effective than

conventional photovoltaic cells. This supposition also

remains to be tested.

Given many of the aforementioned limitations of MFC

power production, a number of researchers believe that

the greatest potential of BESs lies in the generation of

fuels and other commodities [72]. For example, investi-

gators have developed bioelectrochemical reactors that

generate hydrogen gas at the cathode [73]. In such
www.sciencedirect.com
systems, bacteria at the anode oxidize carbon substrates,

generating protons and electrons as in a MFC. A poten-

tiostat raises the potential to overcome thermodynamic

limitations, stimulating the production of hydrogen. Since

the protons and electrons are being derived from organic

matter through biocatalysis, the voltage needed to gen-

erate H2 is an order of magnitude lower than that needed

for electrolysis of water. This system uses the equivalent

of 0.2 mol hydrogen energy per mole of hydrogen pro-

duced, compared to the 1.7 mol loss typical of electrolysis

[74]. In addition to hydrogen, a variety of other products

have already been generated using BESs (some of which

required supplemental current). This includes glutamic

acid [75], propionic acid [76], succinate [77], sulfur [78],

methane [79], formate [80�], and ethanol [81]. In a marine

BES, biofuels and other products might be produced in a

cathode chamber, coupled to microbial organic carbon

degradation at an anode. However, here again there are no

data on the efficiency of this approach when using marine

biomass as fuel. Future studies should test the feasibility

of this approach at both the laboratory and commercially

relevant scales.

Future directions and considerations
Vast amounts of energy flow through marine biogeochem-

ical cycles and may offer the opportunity to harness com-

mercially relevant quantities of electrical energy. To date,

sediment and plankton MFCs have been used to power

electronic devices in the field, such as oceanographic

instruments, beacons, and remotely operated vehicles

[32,37��,82,38��,83], and companies are capitalizing on

these efforts to commercialize these technologies. Com-

paratively little work has been done on the scalability and

commercial utility of environmental MFCs and other

BESs, and the aforementioned discussions have outlined

some of the key limitations. Nevertheless, MFCs offer

some significant advantages over existing conventional and

alternative energy systems. Most MFCs have no moving

parts and have proven to be quite reliable. In nature, they

are likely to produce power for decades as they tap into

open, natural biogeochemical cycles. They generate power

day and night, regardless of solar intensity or wind speed.

They function over a wide range of temperatures, and the

naturally occurring electrode-hosted microbial commu-

nities are highly resistant to perturbations. When con-

sidered in aggregate, these attributes make MFC power

generation attractive. Should advances in engineering

(such as the development of appropriate, cost effective

current collectors) or biology enable MFCs to produce one

order of magnitude more power per unit area or volume,

‘standalone’ MFC power generation begins to approach

economic viability. Ongoing research is targeted at improv-

ing power densities, and it is likely that advances in the

coming years will attain that goal. Even so, it remains to be

seen whether MFCs will become a commercially viable

means of power production in a landscape of alternative

energy technologies.
Current Opinion in Biotechnology 2010, 21:252–258
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