Physiological functioning of carbonic anhydrase in the hydrothermal vent tubeworm Riftia pachyptila

Citation:

Goffredi SK, Girguis PR, Childress JJ, Desaulniers NT. Physiological functioning of carbonic anhydrase in the hydrothermal vent tubeworm Riftia pachyptila. Biological Bulletin. 1999;196 :257-264.
(pdf)1.35 MB

Date Published:

Jun

Abstract:

On the basis of our experiments, it is clear that carbonic anhydrase (CA) plays an important role in the CO2-concentrating mechanisms in Riftia pachyptila. Plume tissue from freshly collected animals had the highest CA activity, 253.7 +/- 36.0 mu mol CO2 min(-1) g(-1) wet wt, and trophosome activity averaged 109.4 +/- 17.9 mu mol CO2 min(-1) g(-1) wet wt. Exposure of living worms to ethoxyzolamide, a carbonic anhydrase inhibitor, resulted in a 99% decrease in CA activity (from 103.9 +/- 38.6 to 0.7 +/- 0.2 mu mol CO2 min(-1) g(-1) wet wt in the plume tissue and 57.6 +/- 17.9 to 0.03 +/- 0,11 mu mol CO2 min(-1) g(-1) wet wt in the trophosome) and essentially a complete cessation of Sigma CO2, uptake. High concentrations of CA appear to facilitate the equilibration between inorganic carbon (Ci) in the external and internal environments, greatly enhancing the diffusion of CO2 into the animal. In summary, R. pachyptila demonstrates very effective acquisition of inorganic carbon from the environment, thereby providing the symbionts with large amounts of CO2. This effective acquisition is made possible by three factors: extremely effective pH regulation, a large external pool of CO2, and, described in this paper, high levels of carbonic anhydrase.

Notes:

210KRTimes Cited:20Cited References Count:32

Last updated on 10/06/2015