Characterizing Microbial Community and Geochemical Dynamics at Hydrothermal Vents Using Osmotically Driven Continuous Fluid Samplers

Citation:

Robidart J, Callister SJ, Song PF, Nicora CD, Wheat CG, Girguis PR. Characterizing Microbial Community and Geochemical Dynamics at Hydrothermal Vents Using Osmotically Driven Continuous Fluid Samplers. Environmental Science & Technology. 2013;47 :4399-4407.
(pdf)1.57 MB

Date Published:

May 7

Abstract:

Microbes play a key role in mediating aquatic biogeochemical cycles. However, our understanding of the relationships between microbial phylogenetic/physiological diversity and habitat physicochemical characteristics is restrained by our limited capacity to concurrently collect microbial and geochemical samples at appropriate spatial and temporal scales. Accordingly, we have developed a low-cost, continuous fluid sampling system (the Biological OsmoSampling System, or BOSS) to address this limitation. The BOSS does not use electricity, can be deployed in harsh/remote environments, and collects/preserves samples with daily resolution for >1 year. Here, we present data on the efficacy of DNA and protein preservation during a 1.5 year laboratory study as well as the results of two field deployments at deep-sea hydrothermal vents, wherein we examined changes in microbial diversity, protein expression, and geochemistry over time. Our data reveal marked changes in microbial composition co-occurring with changes in hydrothermal fluid composition as well as the temporal dynamics of an enigmatic sulfide-oxidizing symbiont in its free-living state. We also present the first data on in situ protein preservation and expression dynamics highlighting the BOSS's potential utility in meta-proteomic studies. These data illustrate the value of using BOSS to study relationships among microbial and geochemical phenomena and environmental conditions.

Notes:

141WATimes Cited:2Cited References Count:36

Last updated on 09/28/2015